QUESTION:

How can we determine the variance in part a of problem 5?

Normally, we would take a likelihood function and calculate the MLE, and then the inverse of the Fisher Information would give the variance; however, here we have the MLE (I think), but not the likelihood function. So what we couldn't figure out was how to extract the Fisher Information.

ANSWER:

Okay, so now my cage has been rattled by the ugly specter of parametric analyses.

None of the following is to downplay the importance of understanding likelihood theory. It gives us great insight into the setting in which our usual analysis techniques might be optimal.

And the proof of the likelihood theory is the most important proof you can learn in your tenure here. (Of course, all it does is apply a Lindeberg-Feller type CLT to transformed variables, and then use a couple Taylor expansions.) But its importance lies in the fact that it tells us how we can also prove things in a distribution-free manner in a wide variety of problems.

The Levy CLT will get you what you want here. You have (by presumption of noninformative censoring) a random sample of i.i.d. random variables with a finite variance. And further, the finite variance is easily computed with binary data. (You will have a homework problem on this next week.)

This is what we typically use for inference. That is, we do not typically assume that we have normal data when we use the sample mean. Instead we just assume i.i.d. with some mean and finite variance. The fact that we get the same asymptotic distribution as would be the exact distribution for the normal is nice, but not proof that our data was normal.

(And as stated in the lecture notes our use of the t distribution is just a small sample adjustment that we do out of habit. It adds some typically desirable conservatism over what we would have done using just a Z statistic and a standard normal distribution.)

Now having ranted about over reliance on parametric assumptions that can rarely be justified, I will note:

The sum of independent binary variables HAS to be binomial. There is no other choice.

Actually, I can strengthen my claim to:

The sum of exchangeably sampled binary variables HAS to be binomial. There is no other choice.

So if you feel better going through the likelihood function and Fisher's information, go for it. (Truly, appealing to the parametric distn is probably the fastest way to the population variance, but then using asymptotic theory based on the Levy CLT is probably faster than arguing through Fisher's

information.)

And I would welcome questions on any of the above-- you will all have the privilege of not having me for Biost 533, but in that course I motivate the theoretical basis for the (nearly) distribution-free interpretation of the general linear model. It is really quite easy, though you do have to use the Lindeberg-Feller CLT, because in regression (and most real statistical

problems) we do not have i.i.d variables-- only independent variables (the distribution varies across our predictor groups).

(I also note that when I teach Stat 512-513, Biost/Stat 533, Biost/Stat 570, or Biost 581 level classes, you do see in each of those classes the likelihood theory in all of its glory-- relating the score, Wald, and likelihood ratio statistics in parametric models and extending those approaches to the distribution-free quasilikelihood and GEE approaches. I stop just short of that in Biost 514 and Biost 517, but I think you will find that many of my lecture slides appeal to those results.)

Scott
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